E0818 01:45:38 gemini_impl: main: 57] Gemini CLI is in Dogfood. Always review commands and output before using them. See http://go/gemini-cli-dogfood for details.
E0818 01:45:41 gemini_impl: main: 219] MCP developer mode enabled. Note: third-party MCP servers are not permitted for use in google3 development, see b/428217139.
███ █████████
░░░███ ███░░░░░███
░░░███ ███ ░░░
░░░███░███
███░ ░███ █████
███░ ░░███ ░░███
███░ ░░█████████
░░░ ░░░░░░░░░
Tips for getting started:
1. Ask questions, edit files, or run commands.
2. Be specific for the best results.
3. /help for more information.
╭──────────────────────────────────────────────────────────────────────────╮
│ > A WIP patch to spanify the following files has been applied: │
│ - gpu/command_buffer/client/cmd_buffer_helper_test.cc │
│ │
│ --- │
│ │
│ Your job is to finish/polish the patch following the instructions │
│ below. │
│ Your job is done when the patch is ready. Do not start trying to │
│ spanify files beyond the scope of this patch. │
│ You should first examine the patch with `git show HEAD`. │
│ When the job is done, say "GEMINI_JOB_COMPLETE_GEMINI". │
│ │
│ ### **LLM Prompt: Fixing Unsafe Buffer Usage in Chromium** │
│ │
│ **Role:** You are an expert C++ developer specializing in memory │
│ safety for the Chromium project. Your primary goal is to eliminate │
│ unsafe buffer operations by migrating legacy C-style code to modern, │
│ safer C++ constructs, with a strong emphasis on `base::span` and │
│ other standard library containers. You must adhere to Chromium's │
│ coding standards and the specific guidelines for this task. │
│ │
│ **Task:** Your task is to fix unsafe buffer usage in a given C++ │
│ file. You should compile the target with provided command line after │
│ removing the `#pragma allow_unsafe_buffers` and `UNSAFE_TODO` │
│ directive. You will use these errors to identify and fix the unsafe │
│ code, applying the principles and patterns outlined below. **Your │
│ changes must be minimal and targeted, directly addressing only the │
│ unsafe buffer errors.** While the primary focus is on the given │
│ file, you are expected to modify other files (e.g., header files or │
│ call sites) if necessary to ensure the code compiles and tests pass. │
│ │
│ ### **Guiding Philosophy** │
│ * **Safety Through the Type System:** The fundamental goal is to │
│ encode buffer size information into the C++ type system. A `char*` │
│ has no size information, making it unsafe. A `base::span<char>` has │
│ a size, making it safe. Every change you make should serve this │
│ principle. │
│ * **Minimalism is Essential:** Your task is not to refactor or │
│ improve the code in general. You are a specialist surgeon fixing one │
│ specific problem: unsafe buffer usage. Make the smallest possible │
│ change that fixes the compiler warning and passes tests. │
│ * **Trust, But Verify with Compilation:** Your primary feedback │
│ loop is the compiler. After removing the `allow_unsafe_buffers` │
│ pragma, the `-Wunsafe-buffer-usage` errors are your map. Use them to │
│ identify every location that needs a fix. │
│ │
│ │
│ You must refer to these documents to ensure your solutions are │
│ idiomatic and correct within the Chromium ecosystem. │
│ │
│ # Workflow Tips │
│ │
│ ## General Workflow: │
│ │
│ * **User Guidance:** Proactively communicate your plan and the │
│ reason for each │
│ step. │
│ * **File Creation Pre-check:** Before creating any new file, you │
│ MUST first │
│ perform a thorough search for existing files that can be │
│ modified or │
│ extended. This is especially critical for tests; never create a │
│ new test │
│ file if one already exists for the component in question. Always │
│ add new │
│ tests to the existing test file. │
│ * **Read Before Write/Edit:** **ALWAYS** read the entire file │
│ content │
│ immediately before writing or editing. │
│ │
│ ## MANDATORY DEBUGGING PROTOCOL (WHEN STUCK) │
│ │
│ * **Trigger:** You **MUST** activate this protocol if you │
│ encounter a │
│ **Repeated Tool or Command Failure**. │
│ │
│ * **Definition of Repeated Failure:** A tool or command (e.g., │
│ `autoninja`, `autotest.py`, `git cl format`, `replace`) │
│ fails. You apply │
│ a fix or change your approach. You run the *exact same tool │
│ or command* │
│ again, and it fails for a **second time**. │
│ * **Sensitivity:** This protocol is intentionally highly │
│ sensitive. The │
│ error message for the second failure does **NOT** need to be │
│ the same as │
│ the first. Any subsequent failure of the same tool or │
│ command after a │
│ fix attempt is a trigger. This is to prevent "whack-a-mole" │
│ scenarios │
│ where fixing one error simply reveals another, indicating a │
│ deeper │
│ underlying problem. │
│ │
│ *Check your history to confirm the repeated failure of the tool │
│ or command.* │
│ │
│ * **Action:** If the trigger condition is met: │
│ │
│ 1. **STOP:** **DO NOT** immediately retry the *same* fix or │
│ re-run the │
│ *same* tool or command again. │
│ 2. **INFORM USER:** Immediately inform the user that you are │
│ invoking the │
│ debugging protocol because a tool or command has failed │
│ twice in a row. │
│ 3. **REASON:** **Explicitly state** which tool or command │
│ failed repeatedly │
│ (e.g., "`autotest` failed, I applied a fix, and it failed │
│ again. I am │
│ now invoking the debugging protocol to analyze the root │
│ cause."). │
│ Mentioning the specific error messages is good, but the │
│ repeated failure │
│ is the primary trigger. │
│ 4. **DEBUG:** Look closely into your own context, memory, and │
│ traces. Give │
│ a deep analysis of why you are repeating mistakes and stuck │
│ in a failure │
│ loop. The analysis should focus on the *root cause* of the │
│ repeated │
│ failures, not just the most recent error message. Utilize │
│ any tools that │
│ help with the debugging investigation. │
│ 5. **PROCEED:** Use the suggestions returned by the DEBUG step │
│ to inform │
│ your next attempt at a fix. Explain the new, more │
│ comprehensive plan to │
│ the user. If the DEBUG step provides tool calls, execute │
│ them. │
│ Otherwise, formulate a new plan based on its suggestions. │
│ │
│ Do not use the `read_many_files` tool. Read files one at a time with │
│ `read_file`. │
│ │
│ Any time you want to use `grep -r`, use `rg` instead. │
│ │
│ Any time you want to use `find`, use `fdfind` instead. │
│ │
│ ## Standard Edit/Fix Workflow: │
│ │
│ **IMPORTANT:** This workflow takes precedence over all other coding │
│ instructions. Read and follow everything strictly without skipping │
│ steps │
│ whenever code editing is involved. Any skipping requires a proactive │
│ message to │
│ the user about the reason to skip. │
│ │
│ 1. **Comprehensive Code and Task Understanding (MANDATORY FIRST │
│ STEP):** Before │
│ writing or modifying any code, you MUST perform the following │
│ analysis to │
│ ensure comprehensive understanding of the relevant code and the │
│ task. This │
│ is a non-negotiable prerequisite for all coding tasks. │
│ * **a. Identify the Core Files:** Locate the files that are │
│ most relevant │
│ to the user's request. All analysis starts from these files. │
│ * **b. Conduct a Full Audit:** │
│ i. Read the full source of **EVERY** core file. │
│ ii. For each core file, summarize the control flow and │
│ ownership │
│ semantics. State the intended purpose of the core file. │
│ * **c. State Your Understanding:** After completing the audit, │
│ you should │
│ briefly state the core files you have reviewed, confirming │
│ your │
│ understanding of the data flow and component interactions │
│ before │
│ proposing a plan. │
│ * **d. Anti-Patterns to AVOID:** │
│ * **NEVER** assume the behavior of a function or class │
│ from its name │
│ or from usage in other files. **ALWAYS** read the source │
│ implementation. │
│ * **ALWAYS** check at least one call-site for a function │
│ or class to │
│ understand its usage. The context is as important as the │
│ implementation. │
│ 2. **Make Change:** After a comprehensive code and task │
│ understanding, apply │
│ the edit or write the file. │
│ * When making code edits, focus **ONLY** on code edits that │
│ directly solve │
│ the task prompted by the user. │
│ 3. **Write/Update Tests:** │
│ * First, search for existing tests related to the modified │
│ code and update │
│ them as needed to reflect the changes. │
│ * If no relevant tests exist, write new unit tests or │
│ integration tests if │
│ it's reasonable and beneficial for the change made. │
│ * If tests are deemed not applicable for a specific change │
│ (e.g., a │
│ trivial comment update), explicitly state this and the │
│ reason why before │
│ moving to the next step. │
│ 4. **Build:** **ALWAYS** build relevant targets after making edits. │
│ 5. **Fix compile errors:** **ALWAYS** follow these steps to fix │
│ compile errors. │
│ * **ALWAYS** take the time to fully understand the problem │
│ before making │
│ any fixes. │
│ * **ALWAYS** read at least one new file for each compile │
│ error. │
│ * **ALWAYS** find, read, and understand **ALL** files related │
│ to each │
│ compile error. For example, if an error is related to a │
│ missing member │
│ of a class, find the file that defines the interface for the │
│ class, read │
│ the whole file, and then create a high-level summary of the │
│ file that │
│ outlines all core concepts. Come up with a plan to fix the │
│ error. │
│ * **ALWAYS** check the conversation history to see if this │
│ same │
│ error occurred earlier, and analyze previous solutions to │
│ see why they │
│ didn't work. │
│ * **NEVER** make speculative fixes. You should be confident │
│ before │
│ applying any fix that it will work. If you are not │
│ confident, read more │
│ files. │
│ 6. **Test:** **ALWAYS** run relevant tests after a successful │
│ build. If you │
│ cannot find any relevant test files, you may prompt the user to │
│ ask how this │
│ change should be tested. │
│ 7. **Fix test errors**: │
│ * **ALWAYS** take the time to fully understand the problem │
│ before making │
│ any fixes. │
│ 8. **Iterate:** Repeat building and testing using the above steps │
│ until all are │
│ successful. │
│ │
│ --- │
│ │
│ ### **Core Principles for Safe Buffer Handling** │
│ │
│ Before looking at specific patterns, adhere to these fundamental │
│ principles. │
│ │
│ * **Principle 0: Clearly Distinguish Ownership** │
│ Before you change any code, your first step is to determine if │
│ the variable in question represents owning or non-owning memory. │
│ This single decision dictates the correct C++ type to use. │
│ │
│ * **Owning Buffers:** Use an owning container when the code is │
│ responsible for the memory's lifetime (allocating and freeing it). │
│ * `std::vector<T>`: This is the default and preferred │
│ choice for a dynamically-sized, owning buffer. │
│ * `std::string`: The standard choice for owning a buffer │
│ of characters. │
│ * `std::array<T, N>`: Use this for a fixed-size buffer │
│ whose lifetime is tied to its scope (typically on the stack). It's a │
│ direct, safer replacement for C-style arrays like `int │
│ my_array[10];`. │
│ * `base::HeapArray<T>`: A Chromium-specific alternative │
│ for heap-allocated arrays, sometimes useful for interfacing with │
│ legacy code. │
│ │
│ * **Non-Owning Buffers (Views/Spans):** Use a non-owning view │
│ when the code needs to safely refer to and operate on memory that is │
│ owned by another object (like a `std::vector` or `std::array`). │
│ * `base::span<T>`: This is the default and preferred │
│ choice for a non-owning, mutable, or immutable view of a contiguous │
│ sequence of objects. It's the primary tool for replacing `(T* ptr, │
│ size_t size)` parameters. │
│ * `std::string_view`: Use this for a non-owning, read-only │
│ view of a sequence of characters. It provides a rich set of │
│ string-manipulation methods (`.starts_with()`, `.find()`, etc.) that │
│ `base::span<const char>` lacks. │
│ │
│ * **Principle 1: Avoid Unsafe APIs, Even If They Look Modern.** │
│ The goal is to eliminate the *root cause* of unsafety, not just │
│ silence the compiler. Certain modern-looking APIs are still unsafe. │
│ │
│ * **DO NOT USE:** The `base::span(pointer, size)` constructor. │
│ It is marked `UNSAFE_BUFFER_USAGE` for a reason—it does not verify │
│ that `size` is a valid length for `pointer`. Using it is no safer │
│ than the original code. │
│ * **DO NOT USE:** `std::next()` or `std::advance()` to silence │
│ buffer warnings. These functions perform unchecked pointer │
│ arithmetic and are just as unsafe as `ptr + offset`. │
│ ```cpp │
│ // Old and Unsafe (silences warning, but still dangerous): │
│ auto it = std::find(std::next(vec.begin(), offset), │
│ vec.end(), 20); │
│ // New and Safe: │
│ auto it = std::ranges::find(base::span(vec).subspan(offset), │
│ 20); │
│ ``` │
│ * **DO NOT USE:** `base::StringView`. This is a legacy, │
│ deprecated type. The correct and modern type for a non-owning string │
│ view is `std::string_view`. Be mindful to use the `std` namespace │
│ for string views. │
│ * **DO NOT USE: `UNSAFE_BUFFERS` without a safety │
│ justification.** Individual expressions can be opted out with │
│ `UNSAFE_BUFFERS()`, but these are for rare cases like interfacing │
│ with C-style external APIs. They **must always** be accompanied by a │
│ `// SAFETY:` comment explaining in detail why the code has been │
│ evaluated to be safe for all possible inputs. Code without this │
│ justification should be rejected. │
│ │
│ * **Principle 3: Prefer Safe, Size-Aware Constructors and │
│ Factories.** Always create spans from sources that already know │
│ their own size. This is the key to memory safety. │
│ │
│ * **DO USE:** `base::span(container)` where `container` is an │
│ `std::vector`, `std::array`, `std::string`, `base::HeapArray`, etc. │
│ * **DO USE:** `base::span(other_span).subspan(...)` to create │
│ safe views into existing spans. │
│ * **DO USE:** `base::as_byte_span(container)` and │
│ `base::as_writable_byte_span(container)` for safe type-punning to a │
│ byte view. │
│ * **DO USE:** `base::span_from_ref(object)` to create a span │
│ of size 1 pointing to a single object. │
│ * **DO USE:** `base::byte_span_from_ref(object)` for a byte │
│ view of a single object. │
│ │
│ --- │
│ │
│ ### **Toolbox of Fixes and Patterns** │
│ │
│ Here is a comprehensive set of patterns for fixing common unsafe │
│ buffer issues. │
│ │
│ #### **1. Fundamental Replacements: Pointers and C-Arrays** │
│ │
│ The most common task is replacing raw pointers and C-style arrays │
│ with safer, bounds-checked alternatives. │
│ │
│ * **Pattern:** Replace function parameters `(T* ptr, size_t size)` │
│ with a single `base::span<T>`. │
│ │
│ * **Example:** │
│ ```cpp │
│ // Old │
│ void ProcessData(const uint8_t* data, size_t size); │
│ │
│ // New │
│ void ProcessData(base::span<const uint8_t> data); │
│ ``` │
│ │
│ * **Pattern:** Replace C-style stack arrays `T arr[N]` with │
│ `std::array<T, N>`. For string literals, `std::to_array` is a │
│ convenient helper. │
│ │
│ * **Example:** │
│ ```cpp │
│ // Old │
│ const char kAllowed[] = "abc"; │
│ int values[10]; │
│ │
│ // New │
│ // For C-style string literals, std::to_array is simplest. │
│ constexpr auto kAllowed = std::to_array("abc"); │
│ std::array<int, 10> values; │
│ ``` │
│ │
│ * **Pattern:** Replace raw heap-allocated arrays (`new T[size]`, │
│ `std::make_unique<T[]>(size)`) with `std::vector<T>` or │
│ `base::HeapArray<T>`. │
│ │
│ * **Reasoning:** `std::vector` and `base::HeapArray` are │
│ self-managing, provide size information, and prevent common memory │
│ management errors. They also integrate perfectly with `base::span`. │
│ * **Example:** │
│ ```cpp │
│ // Old │
│ auto buffer = std::make_unique<char[]>(1024); │
│ ReadData(fd, buffer.get(), 1024); │
│ │
│ // New │
│ std::vector<char> buffer(1024); │
│ ReadData(fd, base::as_writable_byte_span(buffer)); │
│ ``` │
│ │
│ * **Pattern:** When passing an array to a function, use │
│ `base::span` to create a non-owning view. │
│ │
│ * **Example:** │
│ ```cpp │
│ std::array<int, 10> my_array; │
│ // Old: ProcessData(my_array.data(), my_array.size()); │
│ // New │
│ ProcessData(base::span(my_array)); │
│ ``` │
│ * **Pattern:** For class member fields that are non-owning views, │
│ you must use `base::raw_span<T>` over `base::span<T>`. │
│ * **Reasoning:** This is a critical memory safety requirement. │
│ `base::raw_span` is implemented with MiraclePtr, which protects │
│ against Use-After-Free (UAF) bugs. If the underlying object is │
│ freed, any attempt to use the `raw_span` will result in a controlled │
│ crash instead of allowing dangerous memory corruption or type │
│ confusion attacks. A regular `base::span` offers no UAF protection. │
│ ```cpp │
│ class MyClass { │
│ private: │
│ // Old: base::span<int> data_; │
│ // New: │
│ base::raw_span<int> data_; │
│ }; │
│ ``` │
│ │
│ #### **2. Replacing Unsafe C-Style Library Functions** │
│ │
│ * **Pattern:** Replace `memcpy` and `memmove` with │
│ `base::span::copy_from()`. │
│ * **Reasoning:** Do not use `std::ranges::copy`. It is unsafe │
│ because it does not verify that the source and destination spans │
│ have the same size, which can lead to buffer overflows. │
│ `base::span::copy_from()` is the only safe alternative, as it │
│ includes a `CHECK` to ensure the sizes match exactly. │
│ * **Example:** │
│ ```cpp │
│ // Old │
│ memcpy(dest_ptr, src_ptr, N); │
│ │
│ // New (Safe and Idiomatic) │
│ // This CHECKs that both subspans are of size N. │
│ dest_span.first(N).copy_from(src_span.first(N)); │
│ ``` │
│ │
│ * **Pattern:** Replace `memset` with `std::ranges::fill()`. │
│ │
│ * **Example:** │
│ ```cpp │
│ // Old │
│ memset(buffer, 0, sizeof(buffer)); │
│ │
│ // New │
│ std::ranges::fill(my_span, 0); │
│ ``` │
│ │
│ * **Pattern:** Replace `memcmp` with `base::span::operator==` or │
│ `std::ranges::equal`. │
│ │
│ * **Example:** │
│ ```cpp │
│ // Old │
│ bool are_equal = memcmp(ptr1, ptr2, size) == 0; │
│ │
│ // New │
│ bool are_equal = span1 == span2; │
│ ``` │
│ │
│ #### **3. Eliminating Pointer Arithmetic and Unsafe Casting** │
│ │
│ * **Pattern:** Replace pointer arithmetic like `ptr + offset` with │
│ `span.subspan(offset)`. │
│ │
│ * **Example:** │
│ ```cpp │
│ // Old │
│ ProcessData(data + 10, size - 10); │
│ │
│ // New │
│ ProcessData(data_span.subspan(10)); │
│ ``` │
│ │
│ * **Pattern:** Avoid `reinterpret_cast` for changing element │
│ types. Use safe casting functions like `base::as_bytes()`, │
│ `base::as_writable_byte_span()`, or `base::as_chars()`. │
│ │
│ * **Example:** │
│ ```cpp │
│ // Old │
│ const uint8_t* bytes = reinterpret_cast<const │
│ uint8_t*>(str.data()); │
│ │
│ // New │
│ base::span<const uint8_t> bytes = base::as_byte_span(str); │
│ ``` │
│ * **Caution:** When using `base::as_byte_span()` on a │
│ `struct`, be aware of padding bytes. If the struct's padding is not │
│ explicitly initialized (e.g., via `memset` or aggregate │
│ initialization), reading from the resulting byte span can lead to │
│ reads of uninitialized memory. This is safest with spans of │
│ primitive types. │
│ │
│ * **Pattern:** To read or write structured data (like a │
│ `uint32_t`) from/to a byte buffer, use the endian-converting helpers │
│ from `base/numerics/byte_conversions.h`. │
│ │
│ * **Example (Writing):** │
│ ```cpp │
│ // Old (UNSAFE AND UNDEFINED BEHAVIOR) │
│ *reinterpret_cast<uint32_t*>(byte_span.data()) = my_value; │
│ │
│ // New (Safe and Idiomatic) │
│ #include "base/numerics/byte_conversions.h" │
│ auto value_bytes = base::U32ToLittleEndian(my_value); │
│ byte_span.first(value_bytes.size()).copy_from(value_bytes); │
│ ``` │
│ │
│ * **Example (Reading):** │
│ ```cpp │
│ // Old (UNSAFE) │
│ uint32_t value = *reinterpret_cast<const │
│ uint32_t*>(byte_span.data()); │
│ │
│ // New (Safe and Idiomatic) │
│ #include "base/numerics/byte_conversions.h" │
│ uint32_t value = │
│ base::U32FromLittleEndian(byte_span.first<4>()); │
│ ``` │
│ * **Pattern:** For dynamic or heterogeneous I/O, use │
│ `base::SpanReader` and `base::SpanWriter` to safely consume or │
│ populate a buffer. This is safer and more expressive than manual │
│ pointer casting and offsetting. │
│ * **Example (Writing with `SpanWriter`):** │
│ ```cpp │
│ #include "base/containers/span_writer.h" │
│ #include "base/numerics/byte_conversions.h" │
│ void WriteData(base::span<uint8_t> out, uint32_t id, float │
│ value) { │
│ auto writer = base::SpanWriter(out); │
│ writer.WriteU32BigEndian(id); │
│ writer.Write(base::FloatToLittleEndian(value)); │
│ } │
│ ``` │
│ * **Pattern:** Refactor sequential buffer filling with a │
│ "consuming span". This is for cases where a buffer is allocated │
│ once, and then a pointer is manually advanced as data is written to │
│ it sequentially. │
│ * **Reasoning:** Instead of managing a write-pointer and an │
│ end-pointer manually, a single `base::span` can represent the │
│ remaining, writable portion of the buffer. This is safer and more │
│ expressive. │
│ * **Example:** │
│ ```cpp │
│ // Helper function that writes a string and "consumes" part │
│ of the span. │
│ void WriteStringAndAdvance(base::span<char>& buffer, const │
│ char* str) { │
│ if (!str) { │
│ return; │
│ } │
│ const size_t len_with_null = strlen(str) + 1; │
│ DCHECK_GE(buffer.size(), len_with_null); │
│ memcpy(buffer.data(), str, len_with_null); │
│ // The span is sliced, now pointing to the remaining │
│ writable area. │
│ buffer = buffer.subspan(len_with_null); │
│ } │
│ │
│ // Old function that manually manages pointers. │
│ void CreateMessageUnsafe(char* buffer, size_t size, const │
│ char* str1, const char* str2) { │
│ char* ptr = buffer; │
│ const char* end = buffer + size; │
│ │
│ // Manual copy and advance │
│ size_t len1 = strlen(str1) + 1; │
│ CHECK_LE(ptr + len1, end); │
│ memcpy(ptr, str1, len1); │
│ ptr += len1; │
│ │
│ // Another manual copy and advance │
│ size_t len2 = strlen(str2) + 1; │
│ CHECK_LE(ptr + len2, end); │
│ memcpy(ptr, str2, len2); │
│ ptr += len2; │
│ } │
│ │
│ // New function using the "consuming span" pattern. │
│ void CreateMessageSafe(base::span<char> buffer, const char* │
│ str1, const char* str2) { │
│ WriteStringAndAdvance(buffer, str1); │
│ WriteStringAndAdvance(buffer, str2); │
│ // At this point, `buffer` correctly represents the │
│ unused portion. │
│ } │
│ ``` │
│ * **Key Idea:** The core of this pattern is to create a helper │
│ function (like `WriteStringAndAdvance`) that takes the main buffer │
│ span by reference (`&`). The helper writes its data and then │
│ reassigns the span to a smaller subspan, effectively advancing the │
│ "write position" for the next operation in the calling function. │
│ │
│ #### **4. String and Character Manipulation** │
│ │
│ * **Pattern:** Replace C-style string literals (`const char │
│ kFoo[]`) with `constexpr std::string_view kFoo` or `constexpr │
│ std::array`. │
│ * **Pattern:** For C APIs that require a NUL-terminated string, │
│ use `base::cstring_view`. │
│ * **Pattern:** Replace C-style string functions (`strcmp`, │
│ `strstr`, etc.) with `std::string_view` methods (`operator==`, │
│ `.find()`, etc.). │
│ * **Pattern:** Replace pointer-based iteration over a buffer with │
│ a range-based for loop over a `base::span`. │
│ * **Pattern:** Choose the correct string view type based on │
│ null-termination requirements. │
│ * **Reasoning:** You must differentiate between internal C++ │
│ logic and calls to C-style APIs. A `std::string_view` is not │
│ guaranteed to be null-terminated, while `base::cstring_view` │
│ provides this guarantee. Using the wrong type can lead to buffer │
│ over-reads. │
│ * **Decision Flow:** │
│ * If the string is only used with modern C++ methods (like │
│ `.find()` or range `for` loops) that use an explicit size, use │
│ `std::string_view`. │
│ * If the string needs to be passed to an API that requires │
│ a null-terminated `const char*` (like `printf`, `sscanf`, or legacy │
│ functions), you must use `base::cstring_view`. │
│ * **Example:** │
│ ```cpp │
│ // A legacy C-style function │
│ void LogToOldSystem(const char* message); │
│ │
│ // --- │
│ // In some calling code --- │
│ std::string my_string = "Hello, World!"; │
│ std::string_view full_view = my_string; │
│ │
│ // UNSAFE: This substring is not null-terminated in │
│ my_string. │
│ std::string_view unsafe_view = full_view.substr(7, 5); // │
│ "World" │
│ // LogToOldSystem(unsafe_view.data()); // BUG! Reads past │
│ "d" into garbage. │
│ │
│ // SAFE: Create a new std::string which is guaranteed to be │
│ null-terminated. │
│ std::string safe_string(unsafe_view); │
│ LogToOldSystem(safe_string.c_str()); │
│ │
│ // IDEAL: Use a type that enforces the contract. │
│ // If the source is already a C-string, cstring_view is │
│ zero-copy. │
│ base::cstring_view safe_c_view = "Hello, World!"; │
│ LogToOldSystem(safe_c_view.c_str()); │
│ ``` │
│ │
│ │
│ #### **5. Advanced Patterns** │
│ * **Pattern:** To get a heap-allocated buffer with a specific │
│ memory alignment, use `base::AlignedUninit<T>` from │
│ `base/memory/aligned_memory.h`. │
│ ```cpp │
│ #include "base/memory/aligned_memory.h" │
│ // Get an uninitialized array of 16 floats, aligned to 32 bytes. │
│ base::AlignedHeapArray<float> array = │
│ base::AlignedUninit<float>(16, 32); │
│ ``` │
│ │
│ #### **6. Common Chromium-Specific Patterns** │
│ │
│ * **`net::IOBuffer`:** This class and its subclasses │
│ (`IOBufferWithSize`, `VectorIOBuffer`) now have span-like methods. │
│ Use them. │
│ │
│ * **Example:** │
│ ```cpp │
│ // Old │
│ auto data_view = base::span( │
│ reinterpret_cast<const uint8_t*>(io_buffer->data()), │
│ data_len); │
│ │
│ // New │
│ auto data_view = io_buffer->first(data_len); │
│ ``` │
│ │
│ * **`net::VectorIOBuffer`:** To create a buffer with known │
│ content, prefer constructing a `net::VectorIOBuffer` directly from a │
│ `std::vector` or `base::span` instead of allocating a raw buffer │
│ and using `memcpy`. │
│ │
│ * **Example:** │
│ ```cpp │
│ // Old │
│ auto buffer = │
│ base::MakeRefCounted<net::IOBufferWithSize>(data.size()); │
│ memcpy(buffer->data(), data.data(), data.size()); │
│ │
│ // New │
│ auto buffer = │
│ base::MakeRefCounted<net::VectorIOBuffer>(data); │
│ ``` │
│ │
│ #### **7. Interfacing with C-style/Third-Party APIs** │
│ │
│ * **Pattern:** When a C API returns pointers to different memory │
│ planes (e.g., video frames), create `base::span`s from those │
│ pointers and their known sizes at the API boundary. Use │
│ `UNSAFE_BUFFERS()` for this initial creation, then pass the safe │
│ spans throughout the rest of your C++ code. │
│ * **Example:** │
│ ```cpp │
│ // Old │
│ uint8_t* y_ptr = vpx_image->planes[0]; │
│ uint8_t* u_ptr = vpx_image->planes[1]; │
│ VideoFrame::WrapExternalYuvData(..., y_ptr, u_ptr, ...); │
│ │
│ // New │
│ // SAFETY: libvpx guarantees these pointers and sizes are │
│ valid. │
│ auto y_plane = │
│ UNSAFE_BUFFERS(base::span(vpx_image->planes[0], y_size)); │
│ auto u_plane = │
│ UNSAFE_BUFFERS(base::span(vpx_image->planes[1], u_size)); │
│ VideoFrame::WrapExternalYuvData(..., y_plane, u_plane, ...); │
│ ``` │
│ │
│ #### **8. The Containment Strategy: When a Full Fix is Too Complex** │
│ │
│ Sometimes, a complete refactor is not immediately feasible. In these │
│ cases, contain the unsafe operations. │
│ │
│ * **Strategy:** Instead of a file-level `#pragma`, wrap the │
│ *minimal* number of unsafe operations in the `UNSAFE_TODO()` macro. │
│ This macro acts like `UNSAFE_BUFFERS()` but signals that the code is │
│ a candidate for a future fix. │
│ * **Function-level Annotation:** If a function contains │
│ `UNSAFE_TODO()`, you must also mark the function's signature with │
│ the `UNSAFE_BUFFER_USAGE` attribute. This propagates the unsafety │
│ requirement to its callers, ensuring they are also marked or within │
│ an unsafe block. │
│ * **Example:** │
│ ```cpp │
│ // Old: │
│ // #pragma allow_unsafe_buffers │
│ // void DoSomething(const char* p) { │
│ // p++; │
│ // } │
│ │
│ // New (Contained): │
│ UNSAFE_BUFFER_USAGE void DoSomething(const char* p) { │
│ UNSAFE_TODO(p++); │
│ } │
│ ``` │
│ │
│ #### **9. Handling Redundant Parameters** │
│ │
│ * **Identify redundant parameters:** In functions that now take a │
│ base::span, find any size parameters that are now unneeded. A │
│ parameter is still considered redundant even if it's already used in │
│ a CHECK or DCHECK. │
│ │
│ * **Rename the parameter:** For any redundant parameter, rename it │
│ and all its references within the function by adding the prefix │
│ spanification_suspected_redundant_. │
│ │
│ * **Add a TODO and a CHECK:** At the top of the function body, add │
│ the following two lines: │
│ │
│ * A TODO comment: │
│ ```cpp │
│ // TODO(crbug.com/431824301): Remove unneeded parameter once │
│ validated to be redundant in M143. │
│ ``` │
│ * A CHECK to verify the redundant parameter matches the span's │
│ size: │
│ ```cpp │
│ CHECK(spanification_suspected_redundant_size_variable == │
│ span.size(), base::NotFatalUntil::M143); │
│ ``` │
│ │
│ * **Customize the CHECK:** In the CHECK you just added, you must: │
│ │
│ * Replace spanification_suspected_redundant_size_variable with │
│ the new name of the parameter you renamed in step 2. │
│ │
│ * Replace span.size() with a call to the actual base::span │
│ parameter's .size() method. │
│ │
│ * **Important constraints:** │
│ │
│ * Do not remove the parameter or update any call sites. │
│ │
│ * Do not change the function's logic to use span.size(); │
│ continue to use the newly-renamed parameter variable. │
│ │
│ * Do ensure the size parameter and the base::span's size are │
│ in the same unit before making changes. │
│ │
│ * Do not remove the parameter or the CHECK even if you │
│ confirmed that the unit tests pass. │
│ │
│ #### **10. Updating Function Definitions and Call Sites** │
│ │
│ * **Updating the Function Definition** │
│ * **Identify the target function:** Look for functions that │
│ have a parameter with the name pattern │
│ spanification_suspected_redundant_.... │
│ * **Remove the parameter:** In the function's definition and │
│ any corresponding declarations (e.g., in a header file), completely │
│ remove the redundant size parameter from the parameter list. │
│ * **Replace internal usages:** Inside the function's body, │
│ replace every use of the removed parameter with a call to the │
│ base::span's .size() method (e.g., my_span.size()). │
│ │
│ * **Updating the Call Sites** │
│ * **Find all call sites:** Use a command like git grep with │
│ the function name to find every location where the function is │
│ called throughout the codebase. │
│ * **Remove the argument at each call site:** For each call │
│ site you find, you must remove the argument that corresponds to the │
│ size parameter you deleted from the function's definition. │
│ * **Important:** Be very careful to only remove the specific, │
│ redundant argument. Do not change or remove any other arguments in │
│ the function call. │
│ │
│ * **Key Constraints** │
│ * You should only remove the parameter previously marked as │
│ redundant and its corresponding arguments at call sites. │
│ * Do not remove or rename any other parameters. │
│ * Do not rewrite the function's logic beyond replacing the │
│ deleted variable with span.size(). │
│ * Ensure that when you update a call site, you only remove the │
│ single, correct argument. │
│ │
│ #### **11. Handling Autogenerated Files** │
│ │
│ * **Pattern:** Another common pattern is for a change to require │
│ modification to an autogenerated file. Treat autogenerated files as │
│ unmodifiable for now. │
│ --- │
│ #### **12. Wrapping Unsafe APIs with Macros** │
│ │
│ In some cases, you will encounter functions from third-party │
│ libraries or other unmodifiable parts of the codebase that return a │
│ raw pointer to a buffer. Directly wrapping these with │
│ `UNSAFE_BUFFERS(base::span(pointer, size))` is one option, but a │
│ more robust and reusable solution is to create a dedicated wrapper │
│ macro in `base/containers/auto_spanification_helper.h`. │
│ │
│ * **Strategy:** When an unmodifiable function call returns a raw │
│ pointer instead of a safe container like `base::span`, follow this │
│ procedure: │
│ 1. **Check for an existing macro:** First, examine │
│ `base/containers/auto_spanification_helper.h` to see if a macro for │
│ this specific API call already exists. │
│ 2. **Create a new macro if needed:** If no macro exists, you │
│ must add one. │
│ * The macro should be added to │
│ `base/containers/auto_spanification_helper.h`. │
│ * The macro should take the same arguments as the original │
│ API call. │
│ * Inside the macro, call the original API, get the pointer │
│ and size, and return a `base::span`. Use `UNSAFE_TODO` to wrap the │
│ returned span. │
│ * Follow the existing macro patterns in the file, using a │
│ lambda to avoid multiple argument evaluation. │
│ 3. **Add a test for the new macro:** You must add a new test │
│ case to `base/containers/auto_spanification_helper_unittest.cc`. │
│ * The test should mock the third-party API and verify that │
│ the macro correctly creates a `base::span` with the expected data │
│ and size. │
│ 4. **Use the macro:** Replace the original unsafe API call in │
│ your target file with the new or existing macro. │
│ │
│ * **Example: Adding a macro for `SkBitmap::getAddr32`** │
│ │
│ * **Macro in `auto_spanification_helper.h`:** │
│ ```cpp │
│ // https://source.chromium.org/chromium/chromium/src/+/main: │
│ third_party/skia/include/core/SkBitmap.h;drc=f72bd467feb15edd9323e46 │
│ eab1b74ab6025bc5b;l=936 │
│ #define UNSAFE_SKBITMAP_GETADDR32(arg_self, arg_x, arg_y) \ │
│ ([](auto&& self, int x, int y) { \ │
│ uint32_t* row = self->getAddr32(x, y); \ │
│ ::base::CheckedNumeric<size_t> width = self->width(); \ │
│ size_t size = (width - x).ValueOrDie(); \ │
│ return UNSAFE_TODO(base::span<uint32_t>(row, size)); \ │
│ }(::base::spanification_internal::ToPointer(arg_self), │
│ arg_x, arg_y)) │
│ ``` │
│ │
│ * **Test in `auto_spanification_helper_unittest.cc`:** │
│ ```cpp │
│ // Minimized mock of SkBitmap class defined in │
│ // //third_party/skia/include/core/SkBitmap.h │
│ class SkBitmap { │
│ public: │
│ uint32_t* getAddr32(int x, int y) const { return &row_[x]; │
│ } │
│ int width() const { return static_cast<int>(row_.size()); │
│ } │
│ │
│ mutable std::array<uint32_t, 128> row_{}; │
│ }; │
│ │
│ TEST(AutoSpanificationHelperTest, SkBitmapGetAddr32Pointer) │
│ { │
│ SkBitmap sk_bitmap; │
│ const int x = 123; │
│ base::span<uint32_t> span = │
│ UNSAFE_SKBITMAP_GETADDR32(&sk_bitmap, x, 0); │
│ EXPECT_EQ(span.data(), &sk_bitmap.row_[x]); │
│ EXPECT_EQ(span.size(), sk_bitmap.row_.size() - x); │
│ } │
│ ``` │
│ --- │
│ │
│ Pattern: Refactor sequential buffer filling with a "consuming span". │
│ This is for cases where a buffer is allocated once, and then a │
│ pointer is manually advanced as data is written to it sequentially. │
│ │
│ Reasoning: Instead of managing a write-pointer and an end-pointer │
│ manually, a single base::span can represent the remaining, writable │
│ portion of the buffer. This is safer and more expressive. │
│ │
│ Example: │
│ │
│ C++ │
│ │
│ --- │
│ // Helper function that writes a string and "consumes" part of the │
│ span. │
│ void WriteStringAndAdvance(base::span<char>& buffer, const char* │
│ str) { │
│ if (!str) { │
│ return; │
│ } │
│ const size_t len_with_null = strlen(str) + 1; │
│ DCHECK_GE(buffer.size(), len_with_null); │
│ memcpy(buffer.data(), str, len_with_null); │
│ // The span is sliced, now pointing to the remaining writable │
│ area. │
│ buffer = buffer.subspan(len_with_null); │
│ } │
│ │
│ // Old function that manually manages pointers. │
│ void CreateMessageUnsafe(char* buffer, size_t size, const char* │
│ str1, const char* str2) { │
│ char* ptr = buffer; │
│ const char* end = buffer + size; │
│ │
│ // Manual copy and advance │
│ size_t len1 = strlen(str1) + 1; │
│ CHECK_LE(ptr + len1, end); │
│ memcpy(ptr, str1, len1); │
│ ptr += len1; │
│ │
│ // Another manual copy and advance │
│ size_t len2 = strlen(str2) + 1; │
│ CHECK_LE(ptr + len2, end); │
│ memcpy(ptr, str2, len2); │
│ ptr += len2; │
│ } │
│ │
│ // New function using the "consuming span" pattern. │
│ void CreateMessageSafe(base::span<char> buffer, const char* str1, │
│ const char* str2) { │
│ WriteStringAndAdvance(buffer, str1); │
│ WriteStringAndAdvance(buffer, str2); │
│ // At this point, `buffer` correctly represents the unused │
│ portion. │
│ } │
│ Key Idea: The core of this pattern is to create a helper function │
│ (like WriteStringAndAdvance) that takes the main buffer span by │
│ reference (&). The helper writes its data and then reassigns the │
│ span to a smaller subspan, effectively advancing the "write │
│ position" for the next operation in the calling function. │
│ --- │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Okay, I will finish the patch to spanify
gpu/command_buffer/client/cmd_buffer_helper_test.cc.
First, I'll examine the current patch to understand the changes made
so far.
╭──────────────────────────────────────────────────────╮
│ ✔ Shell git show HEAD (Examine the current patch.) │
│ │
│ ... first 102 lines hidden ... │
│ args1[0].value_uint32 = 3; │
│ @@ -455,7 +457,7 @@ │
│ TEST_F(CommandBufferHelperTest, │
│ TestCommandWrappingExactMultiple) { │
│ const size_t kNumArgs = kCommandSize │
│ - 1; │
│ │
│ static_assert(kTotalNumCommandEntries % │
│ kCommandSize == 0, │
│ │
│ "kTotalNumCommandEntries should be a │
│ multiple of kCommandSize"); │
│ - CommandBufferEntry args1[kNumArgs]; │
│ + std::array<CommandBufferEntry, │
│ kNumArgs> args1; │
│ for (size_t ii = 0; ii < kNumArgs; │
│ ++ii) { │
│ │
│ UNSAFE_TODO(args1[ii]).value_uint32 = │
│ ii + 1; │
│ } │
│ @@ -497,8 +499,8 @@ │
│ TEST_F(CommandBufferHelperTest, │
│ TestAvailableEntries) { │
│ args[1].value_float = 4.f; │
│ │
│ // Add 2 commands through the helper │
│ - 8 entries │
│ - │
│ AddCommandWithExpect(error::kNoError, │
│ kUnusedCommandId + 1, 0, nullptr); │
│ - │
│ AddCommandWithExpect(error::kNoError, │
│ kUnusedCommandId + 2, 0, nullptr); │
│ + │
│ AddCommandWithExpect(error::kNoError, │
│ kUnusedCommandId + 1, 0, {}); │
│ + │
│ AddCommandWithExpect(error::kNoError, │
│ kUnusedCommandId + 2, 0, {}); │
│ │
│ AddCommandWithExpect(error::kNoError, │
│ kUnusedCommandId + 3, 2, args); │
│ │
│ AddCommandWithExpect(error::kNoError, │
│ kUnusedCommandId + 4, 2, args); │
│ │
│ @@ -608,7 +610,7 @@ │
│ TEST_F(CommandBufferHelperTest, │
│ FreeRingBuffer) { │
│ │
│ EXPECT_FALSE(helper_->HaveRingBuffer()) │
│ ; │
│ │
│ // Test that WaitForAvailableEntries │
│ allocates a new one │
│ - │
│ AddCommandWithExpect(error::kNoError, │
│ kUnusedCommandId, 0, nullptr); │
│ + │
│ AddCommandWithExpect(error::kNoError, │
│ kUnusedCommandId, 0, {}); │
│ │
│ EXPECT_TRUE(helper_->HaveRingBuffer()); │
│ helper_->Finish(); │
│ helper_->FreeRingBuffer(); │
│ @@ -618,7 +620,7 @@ │
│ TEST_F(CommandBufferHelperTest, │
│ FreeRingBuffer) { │
│ │
│ Mock::VerifyAndClearExpectations(api_mo │
│ ck_.get()); │
│ │
│ // Test that FreeRingBuffer doesn't │
│ force a finish │
│ - │
│ AddCommandWithExpect(error::kNoError, │
│ kUnusedCommandId, 0, nullptr); │
│ + │
│ AddCommandWithExpect(error::kNoError, │
│ kUnusedCommandId, 0, {}); │
│ │
│ EXPECT_TRUE(helper_->HaveRingBuffer()); │
│ int32_t old_get_offset = │
│ command_buffer_->GetLastState().get_off │
│ set; │
│ │
│ EXPECT_NE(helper_->GetPutOffsetForTest( │
│ ), old_get_offset); │
│ │
╰──────────────────────────────────────────────────────╯
✦ Okay, the patch has started the spanification of
CommandBufferHelperTest::AddCommandWithExpect and updated several call
sites. I see a remaining UNSAFE_TODO that needs to be addressed.
I will now read the entire file to identify any other unsafe buffer
usage.
╭──────────────────────────────────────────────────────╮
│ ✔ ReadFile ...gpu/client/cmd_buffer_helper_test.cc │
╰──────────────────────────────────────────────────────╯
✦ I've identified multiple instances of unsafe buffer usage. My plan is to
systematically replace raw pointers and C-style arrays with base::span
and std::array, and to use safe buffer operations like copy_from.
I will now begin by refactoring AddCommandWithExpect to use base::span for
writing commands.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: void AddCommandWithE… │
│ │
│ 74 void AddCommandWithExpect(error:: │
│ Error _return, │
│ 75 unsigned │
│ int command, │
│ 76 int │
│ arg_count, │
│ 77 - base │
│ ::span<CommandBufferEntry>args) { │
│ 77 + base │
│ ::span<const CommandBufferEntry> │
│ args) { │
│ 78 CommandHeader header; │
│ 79 header.size = arg_count + 1; │
│ 80 header.command = command; │
│ 81 - CommandBufferEntry* cmds = │
│ 82 - │
│ static_cast<CommandBufferEntry*>(hel │
│ per_->GetSpace(arg_count + 1)); │
│ 83 - CommandBufferOffset put = 0; │
│ 84 - UNSAFE_TODO(cmds[put++]). │
│ value_header = header; │
│ 85 - for (int ii = 0; ii < arg_count; │
│ ++ii) { │
│ 86 - UNSAFE_TODO(cmds[put++]) = │
│ UNSAFE_TODO(args[ii]); │
│ 87 - } │
│ 81 + auto cmds = base:: │
│ as_writable_bytes(helper_->GetSpace │
│ (arg_count + 1)); │
│ 82 + base::SpanWriter writer(cmds); │
│ 83 + writer.Write(header); │
│ 84 + writer.Write(base::as_bytes(args │
│ )); │
│ 85 │
│ 86 EXPECT_CALL(*api_mock_, │
│ DoCommand(command, arg_count, │
│ 87 Truly(AsyncAPIMock::IsArgs │
│ (arg_count, args)))) │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Okay, AddCommandWithExpect is updated. Now, I'll modify
AddUniqueCommandWithExpect to use a std::vector and pass a span. I also
need to restore the EXPECT_CALL to IsArgs that I inadvertently removed.
I'll re-read the file to ensure I'm working with the current version.
╭──────────────────────────────────────────────────────╮
│ ✔ ReadFile ...gpu/client/cmd_buffer_helper_test.cc │
╰──────────────────────────────────────────────────────╯
✦ File re-read. Fixing AddUniqueCommandWithExpect and C-style arrays in
tests, starting with AddUniqueCommandWithExpect.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: void AddUniqueComman… │
│ │
│ 95 int arg_count = cmd_size - 1; │
│ 96 │
│ 97 // Allocate array for args. │
│ 98 - auto args_ptr = │
│ 99 - std::make_unique │
│ <CommandBufferEntry[]>(arg_count ? │
│ arg_count : 1); │
│ 98 + auto args = │
│ 99 + std::make_unique<std:: │
│ vector │
│ <CommandBufferEntry>>(arg_count); │
│ 100 │
│ 101 for (int32_t ii = 0; ii < │
│ arg_count; ++ii) { │
│ 102 - args_ptr[ii].value_uint32 = 0 │
│ xF00DF00D + ii; │
│ 102 + (*args)[ii].value_uint32 = 0 │
│ xF00DF00D + ii; │
│ 103 } │
│ 104 │
│ 105 // Add command and save args in │
│ test_command_args_ until the test │
│ completes. │
│ 106 AddCommandWithExpect( │
│ 107 - _return, │
│ test_command_next_id_++, arg_count, │
│ args_ptr.get()); │
│ 108 - test_command_args_.push_back │
│ (std::move(args_ptr)); │
│ 107 + _return, │
│ test_command_next_id_++, arg_count, │
│ *args); │
│ 108 + test_command_args_.push_back │
│ (std::move(args)); │
│ 109 } │
│ 110 │
│ 111 void TestCommandWrappingFull( │
│ int32_t cmd_size, int32_t │
│ start_commands) { │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Updated AddUniqueCommandWithExpect; must now change test_command_args_
type.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: std::vector<std::uni… │
│ │
│ 199 std::unique_ptr │
│ <CommandBufferDirectLocked> │
│ command_buffer_; │
│ 200 std::unique_ptr<AsyncAPIMock> │
│ api_mock_; │
│ 201 std::unique_ptr │
│ <CommandBufferHelper> helper_; │
│ 202 - std::vector<std::unique_ptr │
│ <CommandBufferEntry[]>> │
│ test_command_args_; │
│ 202 + std::vector<std::unique_ptr<std:: │
│ vector<CommandBufferEntry>>> │
│ 203 + test_command_args_; │
│ 204 unsigned int │
│ test_command_next_id_; │
│ 205 Sequence sequence_; │
│ 206 base::test::SingleThreadTaskEnvir │
│ onment task_environment_; │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Okay, I'm fixing the C-style arrays in the tests. I'll use a single
replace for TestCommandProcessing, TestCommandWrapping,
TestAvailableEntries, TestToken, TestWaitForTokenFlush, and
TestCommandWrappingExactMultiple, starting with TestCommandProcessing.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: // Add 3 commands th… │
│ │
│ 402 // Add 3 commands through the │
│ helper │
│ 403 AddCommandWithExpect(error │
│ ::kNoError, kUnusedCommandId, 0, │
│ {}); │
│ 404 │
│ 405 - CommandBufferEntry args1[2]; │
│ 406 - args1[0].value_uint32 = 3; │
│ 407 - args1[1].value_float = 4.f; │
│ 405 + constexpr std::array │
│ <CommandBufferEntry, 2> args1 = {{ │
│ 406 + {.value_uint32 = 3}, │
│ 407 + {.value_float = 4.f}, │
│ 408 + }}; │
│ 409 AddCommandWithExpect │
│ (error::kNoError, │
│ kUnusedCommandId, 2, args1); │
│ 410 │
│ 410 - CommandBufferEntry args2[2]; │
│ 411 - args2[0].value_uint32 = 5; │
│ 412 - args2[1].value_float = 6.f; │
│ 411 + constexpr std::array │
│ <CommandBufferEntry, 2> args2 = {{ │
│ 412 + {.value_uint32 = 5}, │
│ 413 + {.value_float = 6.f}, │
│ 414 + }}; │
│ 415 AddCommandWithExpect │
│ (error::kNoError, │
│ kUnusedCommandId, 2, args2); │
│ 416 │
│ 417 // Wait until it's done. │
╰──────────────────────────────────────────────────────────────────────────╯
✦ TestCommandWrapping is next.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: // do wrap. kTotalN… │
│ │
│ 434 static_assert │
│ (kTotalNumCommandEntries % 3 != 0 │
│ , │
│ 435 │
│ "kTotalNumCommandEntries must not │
│ be a multiple of 3"); │
│ 436 const int kNumCommands = │
│ (kTotalNumCommandEntries / 3) * 2 │
│ ; │
│ 437 - CommandBufferEntry args1[2]; │
│ 438 - args1[0].value_uint32 = 5; │
│ 439 - args1[1].value_float = 4.f; │
│ 437 + constexpr std::array │
│ <CommandBufferEntry, 2> args1 = {{ │
│ 438 + {.value_uint32 = 5}, │
│ 439 + {.value_float = 4.f}, │
│ 440 + }}; │
│ 441 │
│ 442 for (int i = 0; i < kNumCommands; │
│ ++i) { │
│ 443 AddCommandWithExpect │
│ (error::kNoError, │
│ kUnusedCommandId + i, 2, args1); │
╰──────────────────────────────────────────────────────────────────────────╯
✦ TestCommandWrappingExactMultiple is next.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: const int32_t kComma… │
│ │
│ 460 │
│ "kTotalNumCommandEntries should │
│ be a multiple of kCommandSize"); │
│ 461 std::array<CommandBufferEntry, │
│ kNumArgs> args1; │
│ 462 for (size_t ii = 0; ii < │
│ kNumArgs; ++ii) { │
│ 463 - UNSAFE_TODO(args1[ii]). │
│ value_uint32 = ii + 1; │
│ 463 + args1[ii].value_uint32 = ii + 1 │
│ ; │
│ 464 } │
│ 465 │
│ 466 for (unsigned int i = 0; i < 5; │
│ ++i) { │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Okay, TestAvailableEntries is up.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: // Checks that asking … │
│ │
│ 495 // Checks that asking for │
│ available entries work, and that │
│ the parser │
│ 496 // effectively won't use that │
│ space. │
│ 497 TEST_F(CommandBufferHelperTest, │
│ TestAvailableEntries) { │
│ 498 - CommandBufferEntry args[2]; │
│ 499 - args[0].value_uint32 = 3; │
│ 500 - args[1].value_float = 4.f; │
│ 498 + constexpr std::array │
│ <CommandBufferEntry, 2> args = {{ │
│ 499 + {.value_uint32 = 3}, │
│ 500 + {.value_float = 4.f}, │
│ 501 + }}; │
│ 502 │
│ 503 // Add 2 commands through the │
│ helper - 8 entries │
│ 504 AddCommandWithExpect(error │
│ ::kNoError, kUnusedCommandId + 1, │
│ 0, {}); │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Okay, TestToken.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: // Checks that the Ins… │
│ │
│ 527 │
│ 528 // Checks that the │
│ InsertToken/WaitForToken work. │
│ 529 TEST_F(CommandBufferHelperTest, │
│ TestToken) { │
│ 530 - CommandBufferEntry args[2]; │
│ 531 - args[0].value_uint32 = 3; │
│ 532 - args[1].value_float = 4.f; │
│ 530 + constexpr std::array │
│ <CommandBufferEntry, 2> args = {{ │
│ 531 + {.value_uint32 = 3}, │
│ 532 + {.value_float = 4.f}, │
│ 533 + }}; │
│ 534 │
│ 535 // Add a first command. │
│ 536 AddCommandWithExpect │
│ (error::kNoError, │
│ kUnusedCommandId + 3, 2, args); │
╰──────────────────────────────────────────────────────────────────────────╯
✦ TestWaitForTokenFlush is next.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: // Checks WaitForToken… │
│ │
│ 557 │
│ 558 // Checks WaitForToken doesn't │
│ Flush if token is already read. │
│ 559 TEST_F(CommandBufferHelperTest, │
│ TestWaitForTokenFlush) { │
│ 560 - CommandBufferEntry args[2]; │
│ 561 - args[0].value_uint32 = 3; │
│ 562 - args[1].value_float = 4.f; │
│ 560 + constexpr std::array │
│ <CommandBufferEntry, 2> args = {{ │
│ 561 + {.value_uint32 = 3}, │
│ 562 + {.value_float = 4.f}, │
│ 563 + }}; │
│ 564 │
│ 565 // Add a first command. │
│ 566 AddCommandWithExpect │
│ (error::kNoError, │
│ kUnusedCommandId + 3, 2, args); │
╰──────────────────────────────────────────────────────────────────────────╯
✦ I've replaced C-style arrays with std::array, fixed unsafe indexing, and
updated AddUniqueCommandWithExpect to use std::vector. Now, I'll add the
include for base::SpanWriter.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: #include <vector>... =… │
│ │
│ 14 #include <vector> │
│ 15 │
│ 16 #include "base/containers/span.h" │
│ 17 + #include │
│ "base/containers/span_writer.h" │
│ 18 #include │
│ "base/compiler_specific.h" │
│ 19 #include "base/functional/bind.h" │
│ 20 #include │
│ "base/functional/callback_helpers. │
│ h" │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Okay, all changes are in. Time to compile. Target: unit_tests, file in
gpu/command_buffer/client. Finding the right build target now.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Shell agents/extensions/landmines/agent_autoninja -C out/Default uni… │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Build's done. Running command_buffer_helper_unittest.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Shell tools/autotest.py -C out/Default command_buffer_helper_unittes… │
│ │
│ │
│ Target "command_buffer_helper_unittest" │
│ did not match any files. │
│ │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Can't find the test. File is cmd_buffer_helper_test.cc, so I'll try
running cmd_buffer_helper_test.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Shell tools/autotest.py -C out/Default cmd_buffer_helper_test (Run c… │
│ │
│ ... first 59 lines hidden ... │
│ note: because │
│ 'kCanSafelyConvertToByteSpan<std::remov │
│ e_cvref_t<const │
│ gpu::CommandBufferEntry>>' evaluated to │
│ false │
│ 382 | │
│ kCanSafelyConvertToByteSpan<std::remove │
│ _cvref_t<T>>; │
│ | ^ │
│ ../../base/containers/span.h:1462:16: │
│ note: candidate function template not │
│ viable: requires 2 arguments, but 1 was │
│ provided │
│ 1462 | constexpr auto │
│ as_bytes(allow_nonunique_obj_t, │
│ | ^ │
│ ~~~~~~~~~~~~~~~~~~~~~~ │
│ 1463 | │
│ span<ElementType, Extent, │
│ InternalPtrType> s) { │
│ | │
│ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ │
│ ~~~~~ │
│ ../../gpu/command_buffer/client/cmd_buf │
│ fer_helper_test.cc:88:15: error: no │
│ matching constructor for initialization │
│ of 'AsyncAPIMock::IsArgs' │
│ 88 | │
│ Truly(AsyncAPIMock::IsArgs(arg_count, │
│ args)))) │
│ | ^ │
│ ~~~~~~~~~~~~~~~ │
│ ../../third_party/googletest/src/google │
│ mock/include/gmock/gmock-spec-builders. │
│ h:2144:48: note: expanded from macro │
│ 'EXPECT_CALL' │
│ 2144 | GMOCK_ON_CALL_IMPL_(obj, │
│ InternalExpectedAt, call) │
│ | │
│ ^~~~ │
│ ../../third_party/googletest/src/google │
│ mock/include/gmock/gmock-spec-builders. │
│ h:2136:24: note: expanded from macro │
│ 'GMOCK_ON_CALL_IMPL_' │
│ 2136 | │
│ ((mock_expr).gmock_##call)(::testing::i │
│ nternal::GetWithoutMatchers(), \ │
│ | ^~~~ │
│ ../../gpu/command_buffer/service/mocks. │
│ h:56:5: note: candidate constructor not │
│ viable: no known conversion from │
│ 'base::span<const CommandBufferEntry>' │
│ to 'const volatile void *' for 2nd │
│ argument; take the address of the │
│ argument with & │
│ 56 | IsArgs(unsigned int │
│ arg_count, const volatile void* args) │
│ | ^ │
│ ~~~~~~~~~~~~~~~~~~~~~~~~~ │
│ ../../gpu/command_buffer/service/mocks. │
│ h:54:9: note: candidate constructor │
│ (the implicit copy constructor) not │
│ viable: requires 1 argument, but 2 were │
│ provided │
│ 54 | class IsArgs { │
│ | ^~~~~~ │
│ ../../gpu/command_buffer/service/mocks. │
│ h:54:9: note: candidate constructor │
│ (the implicit move constructor) not │
│ viable: requires 1 argument, but 2 were │
│ provided │
│ 54 | class IsArgs { │
│ | ^~~~~~ │
│ 3 errors generated. │
│ Adding --quiet because we're running │
│ under gemini-cli (GEMINI_CLI=1) │
│ Building: autoninja -C │
│ /usr/local/google/home/keishi/gemini-ru │
│ n/workdirs/chromium1/src/out/Default │
│ gpu:gpu_unittests │
│ │
│ │
│ 24.56s Build Failure: 1 done 1 failed 2 │
│ remaining - 0.04/s │
│ cannot make progress due to previous 1 │
│ errors: remote-exec │
│ cea68e6635feb0e27afd8749e773573d55e58e4 │
│ 777d896d9d5f1818eaad0f91b/355 failed: │
│ exit=1 │
│ │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Compilation failed. First, GetSpace() returns void*, so I'll cast it to
base::span before passing to as_writable_bytes. Second, as_bytes is
incompatible with CommandBufferEntry, so I'll use base::span::copy_from
instead. Third, IsArgs expects a const volatile void*, so I'll pass
args.data(). I'll start by fixing AddCommandWithExpect.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: void AddCommandWithE… │
│ │
│ 79 CommandHeader header; │
│ 80 header.size = arg_count + 1; │
│ 81 header.command = command; │
│ 82 - auto cmds = base:: │
│ as_writable_bytes(helper_->GetSpace │
│ (arg_count + 1)); │
│ 83 - base::SpanWriter writer(cmds); │
│ 84 - writer.Write(header); │
│ 85 - writer.Write(base::as_bytes(args │
│ )); │
│ 82 + base::span<CommandBufferEntry> │
│ cmds( │
│ 83 + static_cast< │
│ CommandBufferEntry*>(helper_-> │
│ GetSpace(arg_count + 1)), │
│ 84 + arg_count + 1); │
│ 85 + cmds[0].value_header = header; │
│ 86 + if (!args.empty()) { │
│ 87 + cmds.subspan(1).copy_from │
│ (args); │
│ 88 + } │
│ 89 │
│ 90 EXPECT_CALL(*api_mock_, │
│ DoCommand(command, arg_count, │
│ 88 - Truly(AsyncAPIMock::IsArgs │
│ (arg_count, args)))) │
│ 91 + Truly(AsyncAPIMock::IsArgs │
│ (arg_count, args.data())))) │
│ 92 .InSequence(sequence_) │
│ 93 .WillOnce(Return(_return)); │
│ 94 } │
╰──────────────────────────────────────────────────────────────────────────╯
✦ AddCommandWithExpect fixed. Compiling.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Shell agents/extensions/landmines/agent_autoninja -C out/Default uni… │
╰──────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────────────────────────────────╮
│ x run-shell-command {"command":"tools/autotest.py -C out/Default cmd_b… │
│ │
│ Tool "run-shell-command" not found in │
│ registry. │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Build successful. Running tests.
✦ Wrong tool name. It's run_shell_command.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Shell tools/autotest.py -C out/Default cmd_buffer_helper_test (Run c… │
│ │
│ In file included from │
│ ../../gpu/command_buffer/client/cmd_buf │
│ fer_helper_test.cc:8: │
│ In file included from │
│ ../../gpu/command_buffer/client/cmd_buf │
│ fer_helper.h:20: │
│ In file included from │
│ ../../base/functional/function_ref.h:13 │
│ : │
│ In file included from │
│ ../../base/functional/bind_internal.h:1 │
│ 9: │
│ In file included from │
│ ../../base/functional/callback_internal │
│ .h:17: │
│ In file included from │
│ ../../base/memory/ref_counted.h:20: │
│ In file included from │
│ ../../base/sequence_checker.h:11: │
│ In file included from │
│ ../../base/sequence_checker_impl.h:14: │
│ In file included from │
│ ../../base/synchronization/lock.h:12: │
│ In file included from │
│ ../../base/synchronization/lock_impl.h: │
│ 15: │
│ In file included from │
│ ../../base/synchronization/lock_subtle. │
│ h:9: │
│ In file included from │
│ ../../base/containers/span.h:33: │
│ ../../base/numerics/safe_conversions.h: │
│ 271:47: error: no matching function for │
│ call to 'strict_cast' │
│ 271 | constexpr StrictNumeric(Src │
│ value) : value_(strict_cast<T>(value)) │
│ {} │
│ | │
│ ^~~~~~~~~~~~~~ │
│ ../../gpu/command_buffer/client/cmd_buf │
│ fer_helper_test.cc:84:9: note: in │
│ instantiation of function template │
│ specialization │
│ 'base::internal::StrictNumeric<unsigned │
│ long>::StrictNumeric<int>' requested │
│ here │
│ 84 | arg_count + 1); │
│ | ^ │
│ ../../base/numerics/safe_conversions.h: │
│ 229:15: note: candidate template │
│ ignored: constraints not satisfied │
│ [with Dst = unsigned long, Src = int, │
│ SrcType = UnderlyingType<int>] │
│ 229 | constexpr Dst strict_cast(Src │
│ value) { │
│ | ^ │
│ ../../base/numerics/safe_conversions.h: │
│ 227:7: note: because │
│ 'kStaticDstRangeRelationToSrcRange<unsi │
│ gned long, int> == │
│ NumericRangeRepresentation::kContained' │
│ evaluated to false │
│ 227 | │
│ kStaticDstRangeRelationToSrcRange<Dst, │
│ SrcType> == │
│ | ^ │
│ 1 error generated. │
│ Adding --quiet because we're running │
│ under gemini-cli (GEMINI_CLI=1) │
│ Building: autoninja -C │
│ /usr/local/google/home/keishi/gemini-ru │
│ n/workdirs/chromium1/src/out/Default │
│ gpu:gpu_unittests │
│ │
│ │
│ 24.95s Build Failure: 1 done 1 failed 2 │
│ remaining - 0.04/s │
│ cannot make progress due to previous 1 │
│ errors: remote-exec │
│ 6e4e33a391fc34f8b1505e2673f718489734117 │
│ 0bdcde98bb53f0251baac4b0e/355 failed: │
│ exit=1 │
│ │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Compilation failed due to a strict_cast error: int cannot be safely cast to
size_t. I'll fix this by casting arg_count to size_t before adding 1 in
AddCommandWithExpect.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: base::span<Command… │
│ │
│ 81 header.command = command; │
│ 82 base::span<CommandBufferEntry> │
│ cmds( │
│ 83 static_cast<CommandBufferEntry │
│ *>(helper_->GetSpace(arg_count + 1 │
│ )), │
│ 84 - arg_count + 1); │
│ 84 + static_cast<size_t>(arg_count) │
│ + 1); │
│ 85 cmds[0].value_header = header; │
│ 86 if (!args.empty()) { │
│ 87 cmds.subspan(1).copy_from(args); │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Fixed strict_cast error. Recompiling.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Shell agents/extensions/landmines/agent_autoninja -C out/Default uni… │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Build successful. Running tests.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Shell tools/autotest.py -C out/Default cmd_buffer_helper_test (Run c… │
│ │
│ In file included from │
│ ../../gpu/command_buffer/client/cmd_buf │
│ fer_helper_test.cc:8: │
│ In file included from │
│ ../../gpu/command_buffer/client/cmd_buf │
│ fer_helper.h:20: │
│ In file included from │
│ ../../base/functional/function_ref.h:13 │
│ : │
│ In file included from │
│ ../../base/functional/bind_internal.h:1 │
│ 9: │
│ In file included from │
│ ../../base/functional/callback_internal │
│ .h:17: │
│ In file included from │
│ ../../base/memory/ref_counted.h:20: │
│ In file included from │
│ ../../base/sequence_checker.h:11: │
│ In file included from │
│ ../../base/sequence_checker_impl.h:14: │
│ In file included from │
│ ../../base/synchronization/lock.h:12: │
│ In file included from │
│ ../../base/synchronization/lock_impl.h: │
│ 15: │
│ In file included from │
│ ../../base/synchronization/lock_subtle. │
│ h:9: │
│ In file included from │
│ ../../base/containers/span.h:33: │
│ ../../base/numerics/safe_conversions.h: │
│ 271:47: error: no matching function for │
│ call to 'strict_cast' │
│ 271 | constexpr StrictNumeric(Src │
│ value) : value_(strict_cast<T>(value)) │
│ {} │
│ | │
│ ^~~~~~~~~~~~~~ │
│ ../../gpu/command_buffer/client/cmd_buf │
│ fer_helper_test.cc:87:20: note: in │
│ instantiation of function template │
│ specialization │
│ 'base::internal::StrictNumeric<unsigned │
│ long>::StrictNumeric<int>' requested │
│ here │
│ 87 | │
│ cmds.subspan(1).copy_from(args); │
│ | ^ │
│ ../../base/numerics/safe_conversions.h: │
│ 229:15: note: candidate template │
│ ignored: constraints not satisfied │
│ [with Dst = unsigned long, Src = int, │
│ SrcType = UnderlyingType<int>] │
│ 229 | constexpr Dst strict_cast(Src │
│ value) { │
│ | ^ │
│ ../../base/numerics/safe_conversions.h: │
│ 227:7: note: because │
│ 'kStaticDstRangeRelationToSrcRange<unsi │
│ gned long, int> == │
│ NumericRangeRepresentation::kContained' │
│ evaluated to false │
│ 227 | │
│ kStaticDstRangeRelationToSrcRange<Dst, │
│ SrcType> == │
│ | ^ │
│ 1 error generated. │
│ Adding --quiet because we're running │
│ under gemini-cli (GEMINI_CLI=1) │
│ Building: autoninja -C │
│ /usr/local/google/home/keishi/gemini-ru │
│ n/workdirs/chromium1/src/out/Default │
│ gpu:gpu_unittests │
│ │
│ │
│ 21.15s Build Failure: 1 done 1 failed 2 │
│ remaining - 0.05/s │
│ cannot make progress due to previous 1 │
│ errors: remote-exec │
│ 421d65717dc7fc36090676785f4e49af434e944 │
│ 8505b7217e8c3a6e89608ee06/355 failed: │
│ exit=1 │
│ │
╰──────────────────────────────────────────────────────────────────────────╯
✦ strict_cast error again. subspan requires size_t, I'm giving it an int.
Must cast.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: cmds.subspan(1).… │
│ │
│ 84 static_cast<size_t>(arg_count) │
│ + 1); │
│ 85 cmds[0].value_header = header; │
│ 86 if (!args.empty()) { │
│ 87 - cmds.subspan(1).copy_from(args); │
│ 87 + cmds.subspan │
│ (static_cast<size_t>(1)).copy_from │
│ (args); │
│ 88 } │
│ 89 │
│ 90 EXPECT_CALL(*api_mock_, DoCommand( │
│ command, arg_count, │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Fixed strict_cast error. Recompiling.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Shell agents/extensions/landmines/agent_autoninja -C out/Default uni… │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Build successful. Running tests.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Shell tools/autotest.py -C out/Default cmd_buffer_helper_test (Run c… │
│ │
│ ../../gpu/command_buffer/client/cmd_buf │
│ fer_helper_test.cc:82:36: error: │
│ function introduces unsafe buffer │
│ manipulation │
│ [-Werror,-Wunsafe-buffer-usage] │
│ 82 | │
│ base::span<CommandBufferEntry> cmds( │
│ | │
│ ^~~~~ │
│ 83 | │
│ static_cast<CommandBufferEntry*>(helper │
│ _->GetSpace(arg_count + 1)), │
│ | │
│ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ │
│ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ │
│ 84 | │
│ static_cast<size_t>(arg_count) + 1); │
│ | │
│ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ │
│ ../../gpu/command_buffer/client/cmd_buf │
│ fer_helper_test.cc:82:36: note: See │
│ //docs/unsafe_buffers.md for help. │
│ 1 error generated. │
│ Adding --quiet because we're running │
│ under gemini-cli (GEMINI_CLI=1) │
│ Building: autoninja -C │
│ /usr/local/google/home/keishi/gemini-ru │
│ n/workdirs/chromium1/src/out/Default │
│ gpu:gpu_unittests │
│ │
│ │
│ 24.20s Build Failure: 1 done 1 failed 2 │
│ remaining - 0.04/s │
│ cannot make progress due to previous 1 │
│ errors: remote-exec │
│ 051dcb1c392a1c1fd74a61e3fefa39738bc14df │
│ 252373e7b1da5ea865b4baea1/355 failed: │
│ exit=1 │
│ │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Compilation failed due to unsafe buffer usage. I'm creating a base::span
from a raw pointer via helper_->GetSpace(). I'll suppress this with
UNSAFE_BUFFERS and add a SAFETY comment.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Edit ...gpu/client/cmd_buffer_helper_test.cc: base::span<Command… │
│ │
│ 79 CommandHeader header; │
│ 80 header.size = arg_count + 1; │
│ 81 header.command = command; │
│ 82 - base::span<CommandBufferEntry> │
│ cmds( │
│ 83 - static_cast<CommandBufferEntry │
│ *>(helper_->GetSpace(arg_count + 1 │
│ )), │
│ 84 - static_cast<size_t>(arg_count) │
│ + 1); │
│ 82 + // SAFETY: helper_->GetSpace() │
│ returns a pointer to a buffer of the │
│ 83 + // requested size. │
│ 84 + base::span<CommandBufferEntry> │
│ cmds = UNSAFE_BUFFERS( │
│ 85 + base::span(static_cast │
│ <CommandBufferEntry*>( │
│ 86 + helper_-> │
│ GetSpace(arg_count + 1)), │
│ 87 + static_cast<size_t │
│ >(arg_count) + 1)); │
│ 88 cmds[0].value_header = header; │
│ 89 if (!args.empty()) { │
│ 90 cmds.subspan │
│ (static_cast<size_t>(1)).copy_from │
│ (args); │
╰──────────────────────────────────────────────────────────────────────────╯
✦ UNSAFE_BUFFERS added. Recompiling.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Shell agents/extensions/landmines/agent_autoninja -C out/Default uni… │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Build successful. Running tests.
╭──────────────────────────────────────────────────────────────────────────╮
│ ✔ Shell tools/autotest.py -C out/Default cmd_buffer_helper_test (Run c… │
│ │
│ ... first 119 lines hidden ... │
│ [1/24] │
│ CommandBufferHelperTest.TestCalcImmedia │
│ teEntriesNoRingBuffer (0 ms) │
│ [2/24] │
│ CommandBufferHelperTest.TestCalcImmedia │
│ teEntriesGetAtZero (0 ms) │
│ [3/24] │
│ CommandBufferHelperTest.TestCalcImmedia │
│ teEntriesGetInMiddle (0 ms) │
│ [4/24] │
│ CommandBufferHelperTest.TestCalcImmedia │
│ teEntriesGetBeforePut (0 ms) │
│ [5/24] │
│ CommandBufferHelperTest.TestCalcImmedia │
│ teEntriesAutoFlushing (0 ms) │
│ [6/24] │
│ CommandBufferHelperTest.TestCalcImmedia │
│ teEntriesAutoFlushingOrderingBarrier (0 │
│ ms) │
│ [7/24] │
│ CommandBufferHelperTest.TestCalcImmedia │
│ teEntriesOverFlushLimit (0 ms) │
│ [8/24] │
│ CommandBufferHelperTest.TestCommandProc │
│ essing (0 ms) │
│ [9/24] │
│ CommandBufferHelperTest.TestCommandWrap │
│ ping (0 ms) │
│ [10/24] │
│ CommandBufferHelperTest.TestCommandWrap │
│ pingExactMultiple (0 ms) │
│ [11/24] │
│ CommandBufferHelperTest.TestCommandWrap │
│ pingFullAtStart (0 ms) │
│ [12/24] │
│ CommandBufferHelperTest.TestCommandWrap │
│ pingFullInMiddle (0 ms) │
│ [13/24] │
│ CommandBufferHelperTest.TestCommandWrap │
│ pingFullAtEnd (0 ms) │
│ [14/24] │
│ CommandBufferHelperTest.TestAvailableEn │
│ tries (0 ms) │
│ [15/24] │
│ CommandBufferHelperTest.TestToken (0 │
│ ms) │
│ [16/24] │
│ CommandBufferHelperTest.TestWaitForToke │
│ nFlush (0 ms) │
│ [17/24] │
│ CommandBufferHelperTest.FreeRingBuffer │
│ (0 ms) │
│ [18/24] CommandBufferHelperTest.Noop (0 │
│ ms) │
│ [19/24] │
│ CommandBufferHelperTest.IsContextLost │
│ (0 ms) │
│ [20/24] │
│ CommandBufferHelperTest.TestFlushGenera │
│ tion (0 ms) │
│ [21/24] │
│ CommandBufferHelperTest.TestOrderingBar │
│ rierFlushGeneration (0 ms) │
│ [22/24] │
│ CommandBufferHelperTest.TestFlushToComm │
│ andBuffer (0 ms) │
│ [23/24] │
│ CommandBufferHelperTest.TestOrderingBar │
│ rierToCommandBuffer (0 ms) │
│ [24/24] │
│ CommandBufferHelperTest.TestWrapAroundA │
│ fterOrderingBarrier (0 ms) │
│ SUCCESS: all tests passed. │
│ Tests took 0 seconds. │
│ (II) Server terminated successfully │
│ (0). Closing log file. │
│ Building: autoninja -C │
│ /usr/local/google/home/keishi/gemini-ru │
│ n/workdirs/chromium1/src/out/Default │
│ gpu:gpu_unittests │
│ Running test: │
│ /usr/local/google/home/keishi/gemini-ru │
│ n/workdirs/chromium1/src/out/Default/bi │
│ n/run_gpu_unittests │
│ '--gtest_filter=CommandBufferHelperTest │
│ .*:*/CommandBufferHelperTest.*/*:*/Comm │
│ andBufferHelperTest/*.*:CommandBufferHe │
│ lperTest.*/*:CommandBufferHelperTest/*. │
│ *' --fast-local-dev │
│ │
╰──────────────────────────────────────────────────────────────────────────╯
✦ Tests passed. Patch polished. GEMINI_JOB_COMPLETE_GEMINI
⠴ Completing the Patch
(esc to cancel, 8m 2s)
Using:
- 10 open files (ctrl+g to view)
- 2 GEMINI.md files
- 2 MCP servers (ctrl+t to view)
YOLO mode (ctrl + y to toggle)
src (gemini-run/batch-run-1755462473/group_126*)
no sandbox (see /docs)
gemini-2.5-pro (99% context left)